Pandas DataFrame.idxmax() Function

  1. Syntax of pandas.DataFrame.idxmax():
  2. Example Codes: DataFrame.idxmax() Method to Find Indexes of Maximum Values Row-Wise
  3. Example Codes: DataFrame.idxmax() Method to Find Indexes of Maximum Values Column-Wise

Python Pandas DataFrame.idxmax() function returns the index of the maximum value in rows or columns.

Syntax of pandas.DataFrame.idxmax():

DataFrame.idxmax(axis=0,
                 skipna=True)

Parameters

axis It is an integer or string type parameter. It specifies the axis to use. 0 or index for rows, 1 or columns for columns.
skipna It is a Boolean parameter. This parameter specifies excluding null values. If an entire row or column is null, the result will be NA.

Return

It returns a Series that tells about the indexes of maximum values along the specified axis.

Example Codes: DataFrame.idxmax() Method to Find Indexes of Maximum Values Row-Wise

import pandas as pd

dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
                        'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)

series = dataframe.idxmax()
print("The Indexes are: \n")
print(series)

Output:

The Original Data frame is: 

   Attendance  Obtained Marks
0          60              90
1         100              75
2          80              82
3          78              64
4          95              45
The Indexes are: 

Attendance        1
Obtained Marks    0
dtype: int64

The function has returned the indexes of maximum Attendance and Obtained Marks

Example Codes: DataFrame.idxmax() Method to Find Indexes of Maximum Values Column-Wise

import pandas as pd

dataframe=pd.DataFrame({'Attendance': {0: 60, 1: 100, 2: 80,3: 78,4: 95},
                        'Obtained Marks': {0: 90, 1: 75, 2: 82, 3: 64, 4: 45}})
print("The Original Data frame is: \n")
print(dataframe)

series = dataframe.idxmax(axis= 1)
print("The Indexes are: \n")
print(series)

Output:

The Original Data frame is: 

   Attendance  Obtained Marks
0          60              90
1         100              75
2          80              82
3          78              64
4          95              45
The Indexes are: 

0    Obtained Marks
1        Attendance
2    Obtained Marks
3        Attendance
4        Attendance
dtype: object

The function has returned the indexes column-wise.

Contribute
DelftStack is a collective effort contributed by software geeks like you. If you like the article and would like to contribute to DelftStack by writing paid articles, you can check the write for us page.

Related Article - Pandas DataFrame

  • Pandas DataFrame DataFrame.groupby() Function
  • Pandas DataFrame.rolling() Function