Convert Index of a Pandas Dataframe Into a Column
Asad Riaz
Jan 30, 2023
Feb 27, 2020
Pandas
Pandas DataFrame
-
df.index
to Add Index as a New Column -
reset_index
Withrename_axis
to Rename the Current Index Column Name -
Use the
set_index
Method to Convert Column to Index -
MultiIndex
to Set Multiple Layers ofindexes
oncolumn

We will introduce various methods to convert the index
of a Pandas DataFrame
into a column, like df.index
, set_index
, and reset_index
with rename_axis
to rename the index
.
We will also introduce how we can apply Multi-Index
to a given DataFrame
with multiple layers of indexes.
df.index
to Add Index as a New Column
The simplest way to add index as the column is by adding df.index
as a new column to DataFrame
.
Example Codes:
# python 3.x
import pandas as pd
df = pd.DataFrame([
(1,2,None),
(None,4,None),
(5,None,7),
(5,None,None)
],columns=['a','b','d'])
df['index'] = df.index
print(df)
Output:
a b d index1
0 1.0 2.0 NaN 0
1 NaN 4.0 NaN 1
2 5.0 NaN 7.0 2
3 5.0 NaN NaN 3
reset_index
With rename_axis
to Rename the Current Index Column Name
We can change the name of our index
, then use reset_index
to a series:
# python 3.x
import pandas as pd
df = pd.DataFrame([
(1,2,None),
(None,4,None),
(5,None,7),
(5,None,None)],
columns=['a','b','d'])
df = df.rename_axis('index').reset_index()
print(df)
Output:
index a b d
0 0 1.0 2.0 NaN
1 1 NaN 4.0 NaN
2 2 5.0 NaN 7.0
3 3 5.0 NaN NaN
Use the set_index
Method to Convert Column to Index
We can convert any column to index
using the set_index
method.
# python 3.x
import pandas as pd
df = pd.DataFrame([
(1,2,None),
(None,4,None),
(5,4,7),
(5,5,None)],
columns=['a','b','d'])
df.set_index('b',inplace=True)
print(df)
Output:
a d
b
2 1.0 NaN
4 NaN NaN
4 5.0 7.0
5 5.0 NaN
Or if we want to remove the index
name, as in the original, we can do df.index.name = None
:
# python 3.x
import pandas as pd
df = pd.DataFrame([
(1,2,None),
(None,4,None),
(5,4,7),
(5,5,None)
],columns=['a','b','d'])
df.set_index('b',inplace=True)
df.index.name = None
print(df)
Output:
a d
2 1.0 NaN
4 NaN NaN
4 5.0 7.0
5 5.0 NaN
MultiIndex
to Set Multiple Layers of indexes
on column
We can use MultiIndex.from_product()
function to make a MultiIndex as follow:
# python 3.x
import pandas as pd
import numpy as np
index = pd.MultiIndex.from_product([
['Burger', 'Steak', 'Sandwich'],
['Half', 'Full']],
names=['Item', 'Type'])
df = pd.DataFrame(index=index,
data=np.random.randint
(0, 10, (6,4)),
columns=list('abcd'))
print(df)
Output:
a b c d
Item Type
Burger Half 0 3 9 1
Full 2 2 0 5
Steak Half 8 4 5 5
Full 5 8 0 7
Sandwich Half 2 8 9 5
Full 4 4 5 9