NumPy numpy.loadtxt() Function
-
Syntax of
numpy.loadtxt(): -
Example Codes: NumPy Read
txtFile Usingnumpy.loadtxt()Function -
Example Codes: Set
dtypeParameter innumpy.loadtxt()Function While Reading thetxtFile -
Example Codes: Set
delimiterParameter innumpy.loadtxt()Function While ReadingtxtFiles -
Example Codes: Set
usecolsParameter innumpy.loadtxt()Function While Reading thetxtFile -
Example Codes: Set
unpackParameter innumpy.loadtxt()Function While ReadingtxtFiles
Python Numpy numpy.loadtxt() function loads data from a text file and provides fast approach for simple text files.
Syntax of numpy.loadtxt():
numpy.loadtxt(fname,
dtype= < class 'float' > ,
comments='#',
delimiter=None,
converters=None,
skiprows=0,
usecols=None,
unpack=False,
ndmin=0,
encoding='bytes',
max_rows=None)
Parameters
fname |
Path of txt file to be imported |
dtype |
Data type of the resulting array |
comments |
Characters or list of characters used to indicate the start of a comment |
delimiter |
Delimiter to use for parsing the content of txt file |
converters |
Dictionary mapping column number to a function that will parse the column string into the desired value. |
skiprows |
Which row/rows to skip |
usecols |
The column indices to be read |
unpack |
Transpose returned array, so that arguments may be unpacked using x, y, z = loadtxt(...). [unpack=True] |
ndim |
Minimum number of dimensions in returned array |
encoding |
Encoding used to decode the input file. |
max_rows |
Maximum number of rows to read after skiprows lines |
Return
N-dimensional array read from the txt file.
Example Codes: NumPy Read txt File Using numpy.loadtxt() Function
import numpy as np
from io import StringIO
f = StringIO("3 6 8 \n12 9 1 \n 2 3 4")
a = np.loadtxt(f)
print("The loaded array is:")
print(a)
Output:
The loaded array is:
[[ 3. 6. 8.]
[12. 9. 1.]
[ 2. 3. 4.]]
It loads the txt file into the NumPy array.
Here, StringIO acts like a file object.
We can also provide the file path as an argument to the np.loadtxt function using both absolute and relative paths.
Example Codes: Set dtype Parameter in numpy.loadtxt() Function While Reading the txt File
By default, the data type of values of the array read from a txt file is float. We can manually set the data type of elements using the dtype parameter.
import numpy as np
from io import StringIO
f = StringIO("3 6 8 \n12 9 1 \n 2 3 4")
a = np.loadtxt(f,dtype="int")
print("The loaded array is:")
print(a)
Output:
The loaded array is:
[[ 3 6 8]
[12 9 1]
[ 2 3 4]]
The above code loads all the elements into an array from txt file as integers.
Example Codes: Set delimiter Parameter in numpy.loadtxt() Function While Reading txt Files
By default, the delimiter to separate the values is whitespace. We can manually set delimiter using the delimiter parameter.
import numpy as np
from io import StringIO
f = StringIO("3, 6, 8 \n12, 9, 1 \n 2, 3, 4")
a = np.loadtxt(f,dtype="int",delimiter=",")
print("The loaded array is:")
print(a)
Output:
The loaded array is:
[[ 3 6 8]
[12 9 1]
[ 2 3 4]]
As the txt file’s values are separated by ,, we have to use , as the delimiter to separate values while reading from the txt file into the array.
Example Codes: Set usecols Parameter in numpy.loadtxt() Function While Reading the txt File
import numpy as np
from io import StringIO
f = StringIO("3 6 8 \n12 9 1 \n 2 3 4")
a = np.loadtxt(f,dtype="int",usecols =(0, 1))
print("The loaded array is:")
print(a)
Output:
The loaded array is:
[[ 3 6]
[12 9]
[ 2 3]]
The usecols specifies which columns to be read from the txt file.
It reads only the first and second column from the txt file into the array.
Example Codes: Set unpack Parameter in numpy.loadtxt() Function While Reading txt Files
import numpy as np
from io import StringIO
f = StringIO("3 6 8 \n12 9 1 \n 2 3 4")
(x,y,z) = np.loadtxt(f,dtype="int",unpack=True)
print(x)
print(y)
print(z)
Output:
[ 3 12 2]
[6 9 3]
[8 1 4]
It transposes the array and unpacks the rows of the transposed array into specified variables.
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn