Convierte el Pandas DataFrame en JSON
JSON son las siglas de JavaScript Object Notation. Se basa en el formato de los objetos en JavaScript y es una técnica de codificación para representar datos estructurados. Se utiliza mucho hoy en día, especialmente para compartir datos entre servidores y aplicaciones web.
En este artículo presentaremos cómo convertir un DataFrame en una cadena JSON.
Trabajaremos con el siguiente DataFrame:
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
print(df)
Producción :
Name Age Course
0 Jay 16 BBA
1 Jack 19 BTech
2 Mark 18 BSc
El DataFrame de Pandas tiene un método dataframe.to_json() que convierte un DataFrame en una cadena JSON o lo almacena como un archivo JSON externo. El formato final de JSON depende del valor del parámetro orient, que es 'columns' por defecto pero puede ser especificado como 'records', 'index', 'split', 'table', y 'values'.
Todos los formatos están cubiertos a continuación:
orient = 'columns'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="columns")
print(js)
Producción :
{"Name":{"0":"Jay","1":"Jack","2":"Mark"},
"Age":{"0":16,"1":19,"2":18},
"Course":{"0":"BBA","1":"BTech","2":"BSc"}}
orient = 'records'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="records")
print(js)
Producción :
[{"Name":"Jay","Age":16,"Course":"BBA"},{"Name":"Jack","Age":19,"Course":"BTech"},{"Name":"Mark","Age":18,"Course":"BSc"}]
orient = 'index'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="index")
print(js)
Producción :
{"0":{"Name":"Jay","Age":16,"Course":"BBA"},
"1":{"Name":"Jack","Age":19,"Course":"BTech"},
"2":{"Name":"Mark","Age":18,"Course":"BSc"}}
orient = 'split'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="split")
print(js)
Producción :
{"columns":["Name","Age","Course"],
"index":[0,1,2],
"data":[["Jay",16,"BBA"],["Jack",19,"BTech"],["Mark",18,"BSc"]]}
orient = 'table'
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
js = df.to_json(orient="table")
print(js)
Producción :
{"schema": {"fields":[{"name":"index","type":"integer"},{"name":"Name","type":"string"},{"name":"Age","type":"integer"},{"name":"Course","type":"string"}],"primaryKey":["index"],"pandas_version":"0.20.0"}, "data": [{"index":0,"Name":"Jay","Age":16,"Course":"BBA"},{"index":1,"Name":"Jack","Age":19,"Course":"BTech"},{"index":2,"Name":"Mark","Age":18,"Course":"BSc"}]}
Como ya se ha dicho, también podemos exportar el JSON directamente a un archivo externo. Se puede hacer como se muestra a continuación, proporcionando la ruta del archivo en la función dataframe.to_json().
import pandas as pd
df = pd.DataFrame(
[["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
columns=["Name", "Age", "Course"],
)
df.to_json("path\example.json", orient="table")
El código anterior exporta un archivo JSON a la ruta especificada.
Manav is a IT Professional who has a lot of experience as a core developer in many live projects. He is an avid learner who enjoys learning new things and sharing his findings whenever possible.
LinkedInArtículo relacionado - Pandas DataFrame
- Cómo obtener las cabeceras de columna de Pandas DataFrame como una lista
- Cómo borrar la columna de Pandas DataFrame
- Cómo convertir la columna del DataFrame a Datetime en Pandas
- Cómo convertir un float en un entero en Pandas DataFrame
- Cómo clasificar Pandas DataFrame por los valores de una columna
- Cómo obtener el agregado de Pandas grupo por y suma
