Pandas DataFrame DataFrame.fillna() 函数
Suraj Joshi
2023年1月30日
Pandas
Pandas DataFrame
-
pandas.DataFrame.fillna()语法 -
示例代码:用
DataFrame.fillna()方法填充所有DataFrame中的NaN值 -
示例代码:
DataFrame.fillna()方法,参数为method -
示例代码:
DataFrame.fillna()方法的limit参数
pandas.DataFrame.fillna() 函数将 DataFrame 中的 NaN 值替换为某个值。
pandas.DataFrame.fillna() 语法
DataFrame.fillna(
value=None, method=None, axis=None, inplace=False, limit=None, downcast=None
)
参数
value |
scalar、dict、Series 或 DataFrame。用于替换 NaN 的值 |
method |
backfill、bfill、pad、ffill 或 None。用于填充 NaN 值的方法 |
axis |
沿行(axis=0)或列(axis=1)填补缺失的数值 |
inplace |
布尔型。如果为 True,就地修改调用者 DataFrame |
limit |
整数。如果指定了 method,则是要向前/向后填充的连续 NaN 值的最大数量。如果没有指定 method,则是要填充的轴的最大 NaN 值数 |
downcast |
字典。指定转换的数据类型 |
返回值
如果 inplace 为 True,则用给定的 value 替换所有 NaN 值的 DataFrame;否则为 None。
示例代码:用 DataFrame.fillna() 方法填充所有 DataFrame 中的 NaN 值
import pandas as pd
import numpy as np
df = pd.DataFrame({'X': [1, 2, 3, np.nan, 3],
'Y': [4, np.nan, 8, np.nan, 3]})
print("DataFrame:")
print(df)
filled_df = df.fillna(5)
print("Filled DataFrame:")
print(filled_df)
输出:
DataFrame:
X Y
0 1.0 4.0
1 2.0 NaN
2 3.0 8.0
3 NaN NaN
4 3.0 3.0
Filled DataFrame:
X Y
0 1.0 4.0
1 2.0 5.0
2 3.0 8.0
3 5.0 5.0
4 3.0 3.0
它用 pandas.DataFrame.fillna() 方法中作为参数提供的 5 填充 DataFrame 中的所有 NaN 值。
DataFrame.fillna() 中的平均数
我们可以用一列的平均值来代替该列的 NaN 值。
import pandas as pd
import numpy as np
df = pd.DataFrame({'X': [1, 2, 3, np.nan, 3],
'Y': [4, np.nan, 8, np.nan, 3]})
print("DataFrame:")
print(df)
df.fillna(df.mean(),inplace=True)
print("Filled DataFrame:")
print(df)
输出:
DataFrame:
X Y
0 1.0 4.0
1 2.0 NaN
2 3.0 8.0
3 NaN NaN
4 3.0 3.0
Filled DataFrame:
X Y
0 1.00 4.0
1 2.00 5.0
2 3.00 8.0
3 2.25 5.0
4 3.00 3.0
它将 X 列的 NaN 值用 X 列的平均值填充,Y 列的 NaN 值用 Y 列的平均值填充。
由于 inplace=True,调用 fillna() 函数后,原 DataFrame 被修改。
DataFrame.fillna() 用 0 来填充
import pandas as pd
import numpy as np
df = pd.DataFrame({'X': [1, 2, 3, np.nan, 3],
'Y': [4, np.nan, 8, np.nan, 3]})
print("DataFrame:")
print(df)
df.fillna(0,inplace=True)
print("Filled DataFrame:")
print(df)
输出:
DataFrame:
X Y
0 1.0 4.0
1 2.0 NaN
2 3.0 8.0
3 NaN NaN
4 3.0 3.0
Filled DataFrame:
X Y
0 1.0 4.0
1 2.0 0.0
2 3.0 8.0
3 0.0 0.0
4 3.0 3.0
它用 0 填充所有 NaN。
示例代码:DataFrame.fillna() 方法,参数为 method
我们也可以使用不同的 “方法 “参数在 DataFrame 中填充 NaN 值。
import pandas as pd
import numpy as np
df = pd.DataFrame({'X': [1, 2, 3, np.nan, 3],
'Y': [4, np.nan, 8, np.nan, 3]})
print("DataFrame:")
print(df)
filled_df = df.fillna(method="backfill")
print("Filled DataFrame:")
print(filled_df)
输出:
DataFrame:
X Y
0 1.0 4.0
1 2.0 NaN
2 3.0 8.0
3 NaN NaN
4 3.0 3.0
Filled DataFrame:
X Y
0 1.0 4.0
1 2.0 8.0
2 3.0 8.0
3 3.0 3.0
4 3.0 3.0
设置 method="backfill" 将所有的 DataFrame 中的 NaN 值填充到同一列的 NaN 值之后。
我们也可以使用 bfill、pad 和 ffill 方法来填充 DataFrame 中的 NaN 值。
method 方法 |
说明 |
|---|---|
backfill/bfill |
用同一列中的 NaN 值之后的值填充 DataFrame 中所有的 NaN 值 |
ffill/pad |
用同一列中的 NaN 值之前的值填充 DataFrame 中所有的 NaN 值 |
示例代码:DataFrame.fillna() 方法的 limit 参数
DataFrame.fillna() 方法中的 limit 参数限制了该方法所要填充的连续 NaN 值的最大数量。
import pandas as pd
import numpy as np
df = pd.DataFrame({'X': [1, 2,np.nan, 3,3],
'Y': [4, np.nan, 8, np.nan, 3]})
print("DataFrame:")
print(df)
filled_df = df.fillna(3,limit=1)
print("Filled DataFrame:")
print(filled_df)
输出:
DataFrame:
X Y
0 1.0 4.0
1 2.0 NaN
2 NaN 8.0
3 3.0 NaN
4 3.0 3.0
Filled DataFrame:
X Y
0 1.0 4.0
1 2.0 3.0
2 3.0 8.0
3 3.0 NaN
4 3.0 3.0
在这里,一旦一列中的 NaN 值被填满,同一列中的其他 NaN 值将保持原样。
Enjoying our tutorials? Subscribe to DelftStack on YouTube to support us in creating more high-quality video guides. Subscribe
作者: Suraj Joshi
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn